心理与认知
[1]Chen, X., Chen, J., Reed, P., & Zhang, D. (2023). Neural signatures of voluntary action with long-range intentions.
[2]Liu, J., Hu, X., Shen, X., Lv, Z., Song, S., & Zhang, D. (2023). The EEG microstate representation of discrete emotions. International Journal of Psychophysiology, 186, 33-41.
[3]Liu, J., Hu, X., Shen, X., Song, S., & Zhang, D. (2023). Electrophysiological Representations of Multivariate Human Emotion Experience. bioRxiv, 2023-05.
[4]Yuan, J., Zhang, Y., Zhao, Y., Gao, K., Tan, S., & Zhang, D. (2023). The emotion-regulation benefits of implicit reappraisal in clinical depression: Behavioral and electrophysiological evidence. Neuroscience Bulletin, 39(6), 973-983.
[5]Chen, Z., Wang, Z., Shen, Y., Zeng, S., Yang, X., Kuang, Y., ... & Li, W. (2023). Face-specific negative bias of aesthetic perception in depression: Behavioral and EEG evidence. Frontiers in Psychiatry, 14, 1102843.
[6]Zhang, Y., Li, S., Gao, K., Li, Y., Yuan, J., & Zhang, D. (2023). Implicit, But Not Explicit, Emotion Regulation Relieves Unpleasant Neural Responses Evoked by High-Intensity Negative Images. Neuroscience Bulletin, 1-11.
[7]Gao, X., Huang, W., Liu, Y., Zhang, Y., Zhang, J., Li, C., ... & Li, P. (2023). A novel robust Student’s t-based Granger causality for EEG based brain network analysis. Biomedical Signal Processing and Control, 80, 104321.
[8]Dou, H., Lei, Y., Pan, Y., Li, H., & Astikainen, P. (2023). Impact of observational and direct learning on fear conditioning generalization in humans. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 121, 110650.
[9]Li, P., Gao, X., Li, C., Yi, C., Huang, W., Si, Y., ... & Xu, P. (2023). Granger Causal Inference Based on Dual Laplacian Distribution and Its Application to MI-BCI Classification. IEEE Transactions on Neural Networks and Learning Systems.
[10]Bao, C., Hu, X., Zhang, D., Lv, Z., & Chen, J. (2023). Predicting Moral Elevation Conveyed in Danmaku Comments using EEGs. Cyborg and Bionic Systems.
[11]Chen, X., Chen, J., Reed, P., & Zhang, D. (2023). Conscious intention-based processes impact the neural activities prior to voluntary action on reinforcement learning schedules.
[12]Fei, W., Bi, L., Wang, J., Xia, S., Fan, X., & Guan, C. (2022). Effects of cognitive distraction on upper limb movement decoding from EEG signals. IEEE Transactions on Biomedical Engineering, 70(1), 166-174.
[13]Lin, J., Lu, J., Shu, Z., Yu, N., & Han, J. (2023). An EEG-fNIRS neurovascular coupling analysis method to investigate cognitive-motor interference. Computers in Biology and Medicine, 160, 106968.
[14]Hua, W., & Li, Y. (2023). Electroencephalography Based Microstate Functional Connectivity Analysis in Emotional Cognitive Reappraisal Combined with Happy Music. Brain Sciences, 13(4), 554.
[15]Liu, Y., Yu, Y., Ye, Z., Li, M., Zhang, Y., Zhou, Z., ... & Zeng, L. L. (2023). Fusion of Spatial, Temporal, and Spectral EEG Signatures Improves Multilevel Cognitive Load Prediction. IEEE Transactions on Human-Machine Systems, 53(2), 357-366.
[16]Yin, Y., Sun, J., Liu, Y., Wang, H., & Jing, P. (2023). The Cognitive Load of Observation Tasks in 3D Video is Lower Than That in 2D Video. arXiv preprint arXiv:2302.12968.
[17]Gao, X., Zhang, S., Liu, K., Tan, Z., Zhao, G., Han, Y., ... & Li, F. (2023). An adaptive joint CCA-ICA method for ocular artifact removal and its application to emotion classification. Journal of Neuroscience Methods, 390, 109841.
[18]Zhu, M., Jin, H., Bai, Z., Li, Z., & Song, Y. (2023). Image-Evoked Emotion Recognition for Hearing-Impaired Subjects with EEG Signals. Sensors, 23(12), 5461.
[19]Zhou, Y., Wang, P., Gong, P., Liu, Y., Wen, X., Wu, X., & Zhang, D. (2022, November). Deep Domain Adaptation for EEG-Based Cross-Subject Cognitive Workload Recognition. In International Conference on Neural Information Processing (pp. 231-242). Singapore: Springer Nature Singapore.
[20]Wang, L., Li, J., Zhang, Z., Feng, Y., Huang, M., & Liang, D. Design and Analysis of a Novel Experimental Paradigm for Eeg-Based Musical Emotion Recognition. Available at SSRN 4428720.